
Math 273 Course Content and Objectives

COURSE CONTENT AND SCOPE

- Lecture: Outline the topics included in the lecture

portion of the course (Outline reflects course description, all
topics covered in class).

Hours
Per

Topic

COURSE OBJECTIVES

- Lecture:Upon successful completion of

this course, the student will be able to...(Use
action verbs - see Bloom's Taxonomy for
'action verbs requiring cognitive outcomes.')

Review of Object-oriented programming. 4 Understand abstraction and classes,
class constructors and deconstructors,
arrays of objects, inheritance, dynamic
allocation, polymorphism, abstract base
classes and interfaces, and design
issues. Write a series of classes that
utilize polymorphism.

Further topics in programming and Object-oriented
programming.

3 Apply multiple inheritance, virtual
inheritance, the diamond problem,
macros, class and function templates,
and multithreading. Create a class
template.

Event-driven programming. 5 Create an effective graphical user
interface, capture and process
messages, and use application
programming interfaces. Create an
event-driven program that handles all
appropriate messages.

Video game programming. 5 Create graphics loops, video graphics
card capabilities, multiple buffering,
sprites, animation, and capturing user
input. Choose the graphics application
programming interface from DirectX,
OpenGL, or any other professionally
used application programming interface.
Write a program that demonstrates
animation.

Complexity analysis. 3 Analyze computational complexity, big-
O notation, best case analysis, worst
case analysis, average case analysis,
amortized analysis, and NP-
completeness. Analyze the best, worst,
and average case complexities of an
algorithm.

Linked lists. 5 Implement singly linked lists, doubly
linked lists, circular lists, skip lists,
sparse tables, and linked lists in the
Standard Template Library. Implement a
circular list.

Stacks and queues. 4 Implement stacks, queues, and priority
queues. Run simulations using queues.
Create stacks and queues in the
Standard Template Library.

Recursion. 5 Understand recursion in mathematics
and how computers perform function
calls. Apply mathematical recursion, tail
recursion, nontail recursion, indirect

http://ecd.laccd.edu/blooms_taxonomy.htm

recursion, and nested recursion
appropriately. Understand limitations
and appropriate uses of recursion and
backtracking. Determine situations in
which recursive algorithms are
appropriate and be able to write
recursive implementations for those
situations.

Binary trees. 5 Use trees, binary search trees,
searching binary trees, and tree
traversal. Create algorithms for
insertion, deletion, and balancing. Use
heaps and implement priority queues,
and expression trees. Analyze the
complexity of algorithms associated with
the tree.

Sorting. 5 Implement insertion sort, selection sort,
bubble sort, shell sort, heap sort,
Quicksort, merge sort, radix sort, and
sorting in the Standard Template
Library. Analyze and compare
complexity of sorting algorithms.

Hashing. 5 Implement hash functions, division,
folding, mid-square function, extraction,
radix transformation, collision resolution,
and a Map class template.

Graphs. 3 Represent graphs, graph traversals,
shortest paths, cycle detection,
spanning trees, and connectivity. Write
a program that detects cycles in a
graph.

Final examination. 2 Final examination.

Total:

Total Lecture Hours In Section I Class Hours:

54

54

Lab

COURSE CONTENT AND SCOPE - Lab: Outline

the topics included in the lecture portion of the
course (Outline reflects course description, all topics
covered in class).

Hours
Per

Topic

COURSE OBJECTIVES – Lab: Upon

successful completion of this course, the
student will be able to…(Use action verbs –
see Bloom’s Taxonomy for 'action verbs
requiring cognitive outcomes.')

Review of objects and classes. 2 Develop and create a Scanner class
that parses text for specified tokens.

Further topics in programming and Object-Oriented
Programming.

2 Develop and create a class template
that models complex numbers with
integer, fractional, or decimal
coefficients.

Event-driven programming. 2 Develop and create an event-driven
program with a graphical user interface
that computes U.S. federal income tax.

Video game programming. 2 Develop and create a program that
animates a character that moves
according to user input.

Complexity analysis. 2 Develop and create a program
implements the binary search algorithm.

Linked lists. 2 Develop and create a program that
models the behavior of opposing traffic
signals.

Stacks and queues. 2 Simulate customer wait time at a
restaurant using queues.

Recursion. 2 Develop and create a program that
parses a grammar using the method of
recursive descent.

Binary trees. 2 Develop and create an interpreter that
parses and evaluates mathematical
expressions that may include previously
defined variables.

Sorting. 2 Develop and create programs that
perform polynomial arithmetic.

Hashing. 2 Implement a Map class template using
hashing.

Final project. 14 Design, develop, and write a large scale
program in a collaborative
environment. The program may use
ideas from event-driven programming or
video game programming, but must use
at least one data structure, searching, or
sorting algorithm discussed in the
course in a significant way.

Total:

Total Lab Hours In Section I Class Hours:

36

36

http://ecd.laccd.edu/blooms_taxonomy.htm

